Forced Vibration of a Mass Spring System with Damping

In foundation soil system damping is always present in one form or another. For this case fig. 1 (a), the equation of motion is:

W-(W+kz)-c\dfrac{dz}{dt}+Q_0Sin\omega t=m\dfrac{d^2z}{dt^2}   ———-(1)

forced mass spring dashpot system

m\dfrac{d^2z}{dt^2}+c\dfrac{dz}{dt}+kz=Q_0Sin\omega t   ———-(2)

The solution of equation (2) is done by applying the concept of rotating vector. In the figure 1 the exciting force vector Q­0 is placed with a phase angle \phi ahead of the displacement vector A. The equation of displacement may be expressed as:

z=Sin(\omega t -\phi)   ———-(3)

In figure 1 (b) the position of motion vector is shown. In figure 1 (c) the position of force vector is shown. The force vectors act opposite to that of motion vectors. The force vector Q0 is placed with a phase angle \phi ahead of the displacement vector A resolving the force in the vertical and horizontal direction, we have,

kA=m\omega^2A-Q_0cos\phi=0   ———-(4)

And c\omega A-Q_0sin\phi=0   ———-(5)

Solving for A and \phi we have,

A=\dfrac{Q_0}{\sqrt{(k-m\omega^2)^2 +(c\omega)^2}}   ———-(6)

And tan\phi = \dfrac{c\omega}{k-m\omega^2}   ———-(7)

A=\dfrac{\dfrac{Q_0}{k}}{\sqrt{\left(1-\dfrac{m}{k}\omega^2\right)^2+\left(\dfrac{c\omega}{k}\right)^2}}

 

A=\dfrac{\dfrac{Q_0}{k}}{\sqrt{\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + \left(Dc_c\dfrac{\omega}{k}\right)^2}}

 

A=\dfrac{\dfrac{Q_0}{k}}{\sqrt{\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + 4D^2m^2\dfrac{\omega^2}{k^2}}}

 

A=\dfrac{\dfrac{Q_0}{k}}{\sqrt{\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + \left(2D\dfrac{\omega}{\omega_n}\right)^2}}   ———-(8)

 

M=\dfrac{A}{\dfrac{Q_0}{k}}=\dfrac{1}{\sqrt{\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + \left(2D\dfrac{\omega}{\omega_n}\right)^2}}   ———-(9)

 

tan\phi=\dfrac{2D\dfrac{\omega}{\omega_n}}{1-\left(\dfrac{\omega}{\omega_n}\right)^2}   ———-(10)

 

Q_0=A\times\sqrt{\left((k-m\omega)^2+(c\omega)^2\right)}   ———-(11)

 

The equations are plotted for various values D as shown in figure 2(a) and (b). These curves are referred to here as response curves for Constant-force-amplitude-excitation. In the figure it is seen that maximum amplitude occurs at a frequency slightly less than the undamped natural circular frequency, \omega_n where \dfrac{\omega}{\omega_n}=1. The frequency at maximum amplitude will be referred to as resonant frequency fm for constant force Q0.

Resonant frequency at maximum amplitude

responsive curves for a viscously damped degree of freedom

M=\dfrac{A}{\dfrac{Q_0}{k}}=\dfrac{1}{\sqrt{\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + \left(2D\dfrac{\omega}{\omega_n}\right)^2}}   ———-(12)

 

Put x=\left(1-\left(\dfrac{\omega}{\omega_n}\right)^2\right)^2 + \left(2D\dfrac{\omega}{\omega_n}\right)^2 and a=\dfrac{\omega}{\omega_n}, then

\dfrac{dx}{da}=2(1-(a)^2)(-2a)+(2\times2Da)\times2D \dfrac{dx}{da}=0

Or, (1-(a)^2)(-1)+(D)\times 2D=0

Or, -1+a^2+2D^2=0

Or, a^2=1-2D^2

Or, a=\pm\sqrt{1-2D^2}

Or, \dfrac{\omega}{\omega_n}=\pm\sqrt{1-2D^2}   ———-(13)

Taking positive sign, we get,

\omega=\omega_n\sqrt{1-2D^2}   ———-(14)

Or, f_{max}=f_n\sqrt{1-2D^2}   ———-(15)

=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}\sqrt{1-2D^2}   ———-(16)

Magnification factor at resonant frequency is given by,

M=\dfrac{1}{\sqrt{(1-(1-2D^2)^2)+(4D^2)(1-2D^2)}}   ———-(17)

M=\dfrac{1}{\sqrt{4D^4+4D^2-8D^4}}

m=\dfrac{1}{\sqrt{4D^2-4D^4}}=\dfrac{1}{2d\sqrt{1-D^2}}   ———-(18)

When D=\dfrac{1}{\sqrt{2}}=0.71, fmax = 0 which means that the maximum response is the static response.

The maximum amplitude at resonance will be,

A_{max}=\dfrac{Q_0}{2kD\sqrt{1-D^2}}   ———-(19)

When damping in the system is neglected, then

M=\dfrac{1}{1-a^2}   ———-(20)

Leave a Comment